ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Sebastian Schunert, Yousry Azmy
Nuclear Science and Engineering | Volume 173 | Number 3 | March 2013 | Pages 233-258
Technical Paper | doi.org/10.13182/NSE11-17
Articles are hosted by Taylor and Francis Online.
For the sake of a high-fidelity representation of the curved surfaces characteristic of fuel pins, the standard reactor design process employs the method of collision probabilities (CP), the method of characteristics (MOC), or unstructured-grid discrete ordinates (SN) transport solvers for assembly-level calculations. In this work we provide a proof of principle using highly simplified assembly configurations that an approximate staircased representation of the fuel pin's circumference via an orthogonal mesh is accurate enough for reactor physics computations. For the purpose of comparing the performance of these approaches, we employ the orthogonal-grid SN code DORT and the lattice code DRAGON (CP and MOC) to perform k-eigenvalue-type computations for both a boiling water reactor (BWR) and pressurized water reactor (PWR) test assembly. In the framework of a computational model refinement study, the multiplication factor and the fission source distribution are computed and compared to a high-fidelity multigroup MCNP reference solution. The accuracy of the considered methods at each considered model refinement level (fidelity of curved surface representation in DORT, number of tracks in MOC, etc.) is quantified via the difference of the multiplication factor from its reference value and via the root-mean-square and maximum norm of the error in the fission source distribution. We find that for the BWR assembly DORT outperforms MOC and CP in both accuracy and computational efficiency, while for the PWR test case, MOC computes the most accurate fission source distribution but fails to compute the multiplication factor accurately.