ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. M. R. Williams
Nuclear Science and Engineering | Volume 173 | Number 2 | February 2013 | Pages 182-196
Technical Note | doi.org/10.13182/NSE12-11
Articles are hosted by Taylor and Francis Online.
A method has been developed that provides analytic solutions for two-dimensional cell problems for the neutron transport equation. This is made possible by assuming an infinite, repeating lattice of rectangular regions. The solution is effected by means of a finite Fourier transform, the periodicity of which is related to the size of the unit cell. In order to drive the flux, we assume that the cell is composed of two regions: an inner circular region and the remaining exterior part. Different sources are placed in each region thereby leading to a situation rather like the conventional reactor cell problem but with no spatial variation of the cross sections. The method is illustrated by two examples: the Levermore-Pomraning equations and the two-group equations. In the former case, we have obtained the stochastically averaged flux within the cell and also the Pomraning χ-function. In addition, we have calculated the ratio of the spatially averaged flux in the outer region to that in the inner circular region, i.e., the disadvantage factor. Fluxes and disadvantage factors are also obtained for the two-group equations, and the rate of convergence is shown. These results are exact transport theory solutions and are offered as benchmarks for checking transport theory codes. The calculations are also repeated using diffusion theory. The SPN method, which we show to be exact for our problem, is used to demonstrate the rate of convergence of the PN method for two-dimensional cell problems.