ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
M. M. R. Williams
Nuclear Science and Engineering | Volume 173 | Number 2 | February 2013 | Pages 182-196
Technical Note | doi.org/10.13182/NSE12-11
Articles are hosted by Taylor and Francis Online.
A method has been developed that provides analytic solutions for two-dimensional cell problems for the neutron transport equation. This is made possible by assuming an infinite, repeating lattice of rectangular regions. The solution is effected by means of a finite Fourier transform, the periodicity of which is related to the size of the unit cell. In order to drive the flux, we assume that the cell is composed of two regions: an inner circular region and the remaining exterior part. Different sources are placed in each region thereby leading to a situation rather like the conventional reactor cell problem but with no spatial variation of the cross sections. The method is illustrated by two examples: the Levermore-Pomraning equations and the two-group equations. In the former case, we have obtained the stochastically averaged flux within the cell and also the Pomraning χ-function. In addition, we have calculated the ratio of the spatially averaged flux in the outer region to that in the inner circular region, i.e., the disadvantage factor. Fluxes and disadvantage factors are also obtained for the two-group equations, and the rate of convergence is shown. These results are exact transport theory solutions and are offered as benchmarks for checking transport theory codes. The calculations are also repeated using diffusion theory. The SPN method, which we show to be exact for our problem, is used to demonstrate the rate of convergence of the PN method for two-dimensional cell problems.