ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. M. R. Williams
Nuclear Science and Engineering | Volume 173 | Number 2 | February 2013 | Pages 182-196
Technical Note | doi.org/10.13182/NSE12-11
Articles are hosted by Taylor and Francis Online.
A method has been developed that provides analytic solutions for two-dimensional cell problems for the neutron transport equation. This is made possible by assuming an infinite, repeating lattice of rectangular regions. The solution is effected by means of a finite Fourier transform, the periodicity of which is related to the size of the unit cell. In order to drive the flux, we assume that the cell is composed of two regions: an inner circular region and the remaining exterior part. Different sources are placed in each region thereby leading to a situation rather like the conventional reactor cell problem but with no spatial variation of the cross sections. The method is illustrated by two examples: the Levermore-Pomraning equations and the two-group equations. In the former case, we have obtained the stochastically averaged flux within the cell and also the Pomraning χ-function. In addition, we have calculated the ratio of the spatially averaged flux in the outer region to that in the inner circular region, i.e., the disadvantage factor. Fluxes and disadvantage factors are also obtained for the two-group equations, and the rate of convergence is shown. These results are exact transport theory solutions and are offered as benchmarks for checking transport theory codes. The calculations are also repeated using diffusion theory. The SPN method, which we show to be exact for our problem, is used to demonstrate the rate of convergence of the PN method for two-dimensional cell problems.