ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Koichi Okuno, Hideaki Matsue, Satoru Miyata, Yoshiaki Kiyanagi
Nuclear Science and Engineering | Volume 173 | Number 2 | February 2013 | Pages 139-149
Technical Paper | doi.org/10.13182/NSE12-15
Articles are hosted by Taylor and Francis Online.
Trace element analysis using instrumental neutron activation analysis for neutron shield concrete made from colemanite and peridotite rocks is carried out. Also, an activation estimation for the concrete wall in the accelerator neutron source facility is calculated using the obtained element data. The results show that the amount of short-half-life nuclide production in the neutron shield concrete is ˜1/100 that of limestone concrete and also that the amount of 60Co production is 1/5 to 1/8 that of limestone concrete. From these results, the activation property of the neutron shield concrete was found to be much less than that of the limestone concrete, which has been previously reported as having low activation.