ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Will Palisades be the “comeback kid”?
Mike Mlynarek believes in this expression: “In the end it will be OK; and if it’s not OK, it’s not the end.”
As the site vice president at Palisades nuclear power plant in Covert Township, Mich., Mlynarek is overseeing one of the most exciting projects in the United States nuclear power industry. If all goes according to plan, Holtec’s Palisades plant will be splitting atoms once again by the end of 2025 and become the first U.S. nuclear facility to restart after being slated for decommissioning.
Zoltán Perkó, Danny Lathouwers, Jan Leen Kloosterman, Tim van der Hagen
Nuclear Science and Engineering | Volume 173 | Number 2 | February 2013 | Pages 118-138
Technical Paper | doi.org/10.13182/NSE12-18
Articles are hosted by Taylor and Francis Online.
Sensitivity analysis is a technique that is widely used in reactor physics calculations to efficiently obtain first-order changes in responses of interest due to variations of input parameters. This paper presents an extension of the well-known perturbation procedures for the critical eigenvalue and flux functionals. The extended method makes it possible to determine sensitivities in coupled criticality problems with mutual feedback between neutronics and one or more augmenting systems (e.g., thermal hydraulics or fission product poisoning). The technique uses appropriate neutronic and augmenting adjoint functions, which can be obtained by solving a system of coupled adjoint equations.Three different approaches are presented for considering the effects of perturbations in coupled criticality problems with feedback: The steady-state power level is allowed to adjust to maintain criticality with the perturbed parameters (power perturbation), a change is allowed in the critical eigenvalue while the flux is constrained (eigenvalue perturbation), or simultaneous perturbations are made to ensure criticality at the unperturbed power level (control parameter perturbation). In the case of power and eigenvalue perturbations, sensitivities can be obtained with or without power- and k-reset procedures, respectively, yielding identical results to control parameter perturbation.The paper presents the theoretical background, an application to a one-dimensional slab problem with thermal and fission product feedback, and a numerical procedure to obtain the necessary adjoint functions. The proposed technique relies on using the neutronics and augmenting codes separately as a preconditioner for Krylov methods employed to the coupled adjoint problem. This makes the development of new codes unnecessary and provides a means of large-scale implementation.