ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Joshua Peterson, Erich Schneider
Nuclear Science and Engineering | Volume 173 | Number 1 | January 2013 | Pages 28-42
Technical Paper | doi.org/10.13182/NSE11-49
Articles are hosted by Taylor and Francis Online.
A modified form of first-order perturbation theory, called phase-space interpolated perturbation theory (PSIPT), was developed to more accurately model families of perturbations where changes are intermediate to defined reference and bounding configurations. PSIPT can thus be used on any application where the range of change to the system is known a priori but the magnitude of change is not known. PSIPT is demonstrated for several applications, notably the position of the outer shim control cylinders (OSCCs) at the Advanced Test Reactor (ATR). The current method used for calculating the OSCC positions during a cycle startup utilizes a heuristic trial-and-error approach that is impractical with advanced computationally intensive reactor physics tools. PSIPT is implemented into a method to automate shim rotation prediction for startup.