ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
R. H. Chen, M. L. Corradini, G. H. Su, S. Z. Qiu
Nuclear Science and Engineering | Volume 173 | Number 1 | January 2013 | Pages 1-14
Technical Paper | doi.org/10.13182/NSE12-10
Articles are hosted by Taylor and Francis Online.
A molten fuel breakup model that considers solidification effects is proposed in this paper. Both the effect of a solid crust layer and the effect of thermal stresses on the fuel particle fragmentation are taken into account in this model. This solidification model predicts the transient temperature profile and crust layer thickness of the fuel particle by numerically solving the Fourier heat conduction equation under specific initial and boundary conditions. This fuel particle breakup model and transient temperature profile model were incorporated into the TEXAS fuel-coolant interaction (FCI) model; this revised TEXAS FCI model is called TEXAS-VI. This paper compares TEXAS-VI to the FARO L14 experiment (FARO L14), for which fuel-coolant mixing and quench data have been published. The FARO L14 pressure history, liquid water pool temperature, and vapor temperature were found to be in good agreement with the revised model predictions. This mixing behavior will also have an impact on FCI explosion energetics. The solidification effect is under investigation for energetics.