ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
R. H. Chen, M. L. Corradini, G. H. Su, S. Z. Qiu
Nuclear Science and Engineering | Volume 173 | Number 1 | January 2013 | Pages 1-14
Technical Paper | doi.org/10.13182/NSE12-10
Articles are hosted by Taylor and Francis Online.
A molten fuel breakup model that considers solidification effects is proposed in this paper. Both the effect of a solid crust layer and the effect of thermal stresses on the fuel particle fragmentation are taken into account in this model. This solidification model predicts the transient temperature profile and crust layer thickness of the fuel particle by numerically solving the Fourier heat conduction equation under specific initial and boundary conditions. This fuel particle breakup model and transient temperature profile model were incorporated into the TEXAS fuel-coolant interaction (FCI) model; this revised TEXAS FCI model is called TEXAS-VI. This paper compares TEXAS-VI to the FARO L14 experiment (FARO L14), for which fuel-coolant mixing and quench data have been published. The FARO L14 pressure history, liquid water pool temperature, and vapor temperature were found to be in good agreement with the revised model predictions. This mixing behavior will also have an impact on FCI explosion energetics. The solidification effect is under investigation for energetics.