ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
Kazuyoshi Miki, Kotaro Inoue
Nuclear Science and Engineering | Volume 59 | Number 2 | February 1976 | Pages 161-169
Technical Paper | doi.org/10.13182/NSE76-A15686
Articles are hosted by Taylor and Francis Online.
A new calculation code, the Hot Spot Probabilistic Evaluation Code (HOSPEC), is presented for evaluating hot-spot factors in a fast reactor. This code calculates the probability distribution of temperature in the whole core by means of a Monte Carlo method. Each Monte Carlo trial involves a complete thermal conduction analysis, thereby reducing errors due to assumptions in analytic procedures currently in use. With this code it is possible to determine the probability that fuel pellets, fuel pins, or subassemblies will exceed the limiting temperature, as well as determine the number of such “hot spots” that will develop. A quantitative comparison is made of the results obtained from this code with those from other analyses of a prototype fast reactor. The comparison has indicated, among other points, the following findings: 1. For zero hot spots, a conventional analytic evaluation code SHOSPA gives conservative results, i.e., ∼20°C at the fuel center, at a 3σ confidence level. 2. It is of crucial importance to take into account the temperature dependence of the properties of the materials. Neglecting such dependence leads to a much more conservative temperature prediction, e.g., ∼50°C at the fuel center.