ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
William T. Sha, Robert C. Schmitt, P. R. Huebotter
Nuclear Science and Engineering | Volume 59 | Number 2 | February 1976 | Pages 140-160
Technical Paper | doi.org/10.13182/NSE76-A15685
Articles are hosted by Taylor and Francis Online.
A new computational model for steady-state, single-phase, thermal-hydraulic, multichannel analysis of fluid flow through nuclear reactor fuel elements is presented. The model accounts for the conservation of mass, energy, and momentum subject to pressure-drop boundary conditions and leads to a nonlinear multipoint boundary-value problem. The turbulent interchange, radial thermal conduction, and forced flow due to the wire-wrap or grid between the channels are explicitly taken into account. The temperature distribution of the coolant, cladding, and fuel, and the size of the central void of the oxide fuel after thermal restructuring are computed in the model. Three different thermal-hydraulic channel arrangements, i.e., square, hexagonal, and triangular, can be treated by the method presented here. Multipin analysis with transverse interactions or multiassembly calculations without transverse interactions between the channels can be performed. The most important features of this new computational model are: (a) that the effect of axial flow area variation has been incorporated into the derivation of governing equations, (b) that the cross-flow approximation has been improved so that the assumption of constant transverse momentum flux in the direction under consideration is removed, and (c) that partial flow blockage occurring anywhere along the flow path can be analyzed, and the effect on the inlet mass velocity redistribution can be taken into account.