ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Henry A. Sandmeier
Nuclear Science and Engineering | Volume 9 | Number 2 | February 1961 | Pages 260-270
doi.org/10.13182/NSE61-A15608
Articles are hosted by Taylor and Francis Online.
To test reactor fuel elements for their content of fissionable material and poison, it is desirable to have an assembly which has maximum sensitivity to a perturbation of fissionable absorber in the axial center line of the reactor. For normal sizes of thermal power reactor fuel elements, a graphite-moderated reactor is a suitable choice. The change in reactivity measured is the difference between the effect of changes in the fission and absorption parameters. For a bare core and uniform fuel distribution, maximum sensitivity to a fission-parameter-perturbation is obtained for a reactor which has a minimum critical mass. Maximum sensitivity to an absorber-parameter-perturbation is obtained for a reactor which has a minimum amount of total absorptions. Both the fission and absorption sensitivity reach a maximum when the critical mass is minimum. For a reflected core and uniform fuel distribution, the sensitivity to a fissionable absorber can be increased 22% over the bare core sensitivity. By introducing an internal and external reflector, the sensitivity to a fissionable absorber can be increased 30% over the externally reflected core and 56% over the bare core. For nonuniform fuel distribution, an expression is derived relating the effect of a perturbation in fission and absorption to reactivity. The problem of finding a fuel distribution ψ(r) to maximize this expression is analytically formulated. A parameter study was made for the same reactors as for the uniform fuel distribution cases. This was done by shifting more fuel towards the center or towards the edge of the core. No gain in fissionable absorber sensitivity was observed for either the bare or the externally reflected cores. However, the internally and externally reflected core showed a 10% increase in fissionable absorber sensitivity when more fuel was shifted towards the center.