ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
Karl H. Puechl
Nuclear Science and Engineering | Volume 9 | Number 2 | February 1961 | Pages 241-259
doi.org/10.13182/NSE61-A15607
Articles are hosted by Taylor and Francis Online.
An approach to reactor physics is developed by analysis of experimental data on ordinary water, slightly enriched uranium lattices. The developed procedure is extremely simple, and for these particular lattices, it is demonstrated that the thermal utilization factor and resonance escape probability can be calculated to satisfactory accuracy. Generalization of the procedure to all types of lattices is discussed, and a number of graphite moderated lattices are analyzed. However, detailed analysis of further experimental data is required before the generalization can be used with complete confidence. To illustrate the reasonableness of the proposed general approach and hence the desirability for continued investigation along these lines, results of criticality and core-life calculations are presented for the Calder Hall reactor and for the Yankee reactor with various enrichments.