ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
J. R. Beyster, J. L. Wood, W. M. Lopez, R. B. Walton
Nuclear Science and Engineering | Volume 9 | Number 2 | February 1961 | Pages 168-184
doi.org/10.13182/NSE61-A15602
Articles are hosted by Taylor and Francis Online.
An experimental arrangement designed for accurate measurements of low-energy neutron spectra has been assembled and tested. A pulsed high-current electron linear accelerator is used to produce short bursts of fast neutrons which are introduced into a moderating and absorbing assembly. The steady-state energy spectrum of neutrons in the assembly is determined by pulsed-beam time-of-flight techniques. Hydrogen-moderated systems poisoned with a number of common neutron absorbers (boron, cadmium, samarium) have been studied, and the resulting spectra compared with theoretical predictions using both free and bound hydrogen scattering kernels. In general, a marked difference exists between measured spectra and spectra calculated using a free hydrogen kernel. In the case of water where a detailed scattering kernel is available for room temperature, theory and experiment are in reasonable agreement.