ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. N. Purohit
Nuclear Science and Engineering | Volume 9 | Number 2 | February 1961 | Pages 157-167
doi.org/10.13182/NSE61-A15601
Articles are hosted by Taylor and Francis Online.
A general formalism for determining the lower time eigenvalues associated with a decaying pulse of neutrons in a finite multiplying as well as nonmultiplying medium has been developed. This formalism is based upon the expansion of each energy eigenfunction by a complete sum of the associated Laguerre polynomials of first order. The eigenvalues are expressed in terms of the energy transfer moments of the scattering kernel of the medium, weighted by the Maxwellian distribution. The importance of the first eigenvalue in the establishment of the final asymptotic energy distribution is discussed. In the case of a nonabsorbing infinite medium, the reciprocal of the first eigenvalue is shown to be equal to the thermalization time constant, with which the Maxwellian velocity distribution of neutrons is attained. The thermalization time constant was estimated for various moderators. For the heavy-gas case, the thermalization time constant was was found to be equal to (1.274 ° ζ∑s0υ0)−1. It is also established in this study that only two polynomials are required to obtain the relation between the thermalization time constant and the diffusion cooling coefficient derived previously from the Rayleigh-Ritz variational principle. The formalism presented in this paper is general and avoids the concept of neutron temperature in defining the thermalization time constant. The decay of a neutron pulse in a nonmultiplying medium is discussed in detail. For the case of multiplying medium, an analysis of an experiment is presented to indicate the importance of the time-dependent nonleakage probability in the expression of the zeroth eigenvalue.