ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
F. Schroeder, S. G. Forbes, W. E. Nyer, F. L. Bentzen, G. O. Bright
Nuclear Science and Engineering | Volume 2 | Number 1 | February 1957 | Pages 96-115
doi.org/10.13182/NSE57-A15576
Articles are hosted by Taylor and Francis Online.
As a part of a program of reactor safety investigations, the response of a heterogeneous, water-moderated and -reflected reactor (SPERT I) to instantaneous reactivity additions has been studied experimentally with initial temperature of 20°C and initial power level of 5 watts. Excess reactivity additions from approximately O.3% to 1.4%, which result in asymptotic reactor periods from 10 sec to 7 msec, produced self-limiting power bursts with peaks up to 1300 Mw. Plots of the typical behavior of reactor power, fuel plate temperatures, and transient pressures for these tests are presented and discussed. Maximum reactor power, fuel plate temperature, pressure, energy release, and other quantities are correlated as functions of reactor period. The instantaneous excess reactivity of the system during the transient test has been computed from the experimental power behavior and typical results are shown. The reactivity compensation necessary to limit a power burst of this type has been determined and is discussed as a function of initial reactor period. Several mechanisms for the self-shutdown of the reactor are postulated and discussed in light of the experimental results.