ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
J. Chernick, S. Oleksa Moore
Nuclear Science and Engineering | Volume 6 | Number 6 | December 1959 | Pages 537-544
doi.org/10.13182/NSE59-A15516
Articles are hosted by Taylor and Francis Online.
The breeding potential of thermal reactors is re-evaluated on the basis of present nuclear data. It is concluded that positive breeding on the U233, thorium cycle is possible with a variety of moderators including heavy water, graphite, beryllium, and ordinary water. Current measurements indicate that the accepted thermal value of η23 = 2.28 ± 0.02 is somewhat conservative. Neutron spectrum considerations show that η23 decreases gradually with increasing resonance absorption to a minimum of 2.14 ± 0.04. When neutron losses to the moderator are considered, maximum breeding gains of 0.26, 0.22, 0.21, and 0.19, respectively, are obtained for D2O, graphite, Be, and H2O moderated reactors. The breeding gain in reactors partially or completely moderated by beryllium can be considerably increased if use is made of the fast effect, presently estimated at 1.075 ± 0.02 for pure beryllium. Probable breeding gains in proposed full-scale fluid fuel breeders are estimated at 0.09 for the Aqueous Homogenous Reactor and 0.05 for the graphite moderated Liquid Metal Fuel Reactor and Molten Salt Reactor. Breeding in predominantly thermal, solid fuel reactors also appears within reach if neutron losses are minimized. The possibility of positive breeding in near thermal, plutonium fuelled reactors is unsettled although this goal can be approached by maximum use of the fast effect in U238. Estimates of breeding ratios in plutonium fuelled reactors depends on the variation of η49 with neutron temperature which is still inadequately known.