ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
Walter Kofink
Nuclear Science and Engineering | Volume 6 | Number 6 | December 1959 | Pages 475-486
doi.org/10.13182/NSE59-A15505
Articles are hosted by Taylor and Francis Online.
The aim of this paper is to show that the treatment of the transport equation in cylindrical geometry does not involve essentially more tedious calculations than the treatment in plane geometry. A complete solution is given for homogeneous media including the complementary solutions. Every partial solution contains in its expansion of spherical harmonics some functions of a parameter with appropriate coefficients. It will be shown that these functions are Legendre polynomials and Legendre functions of the second kind as in the case of plane geometry for the “main” solution, and derivatives of these functions for the “complementary” solutions. They are solutions of the recursion relations for the expansion and yield a further recursion relation for the coefficients. Tables of these coefficients are given up to the eleventh spherical harmonic approximation and a general formula is derived for them. Two examples are worked out, a first based upon the supposition of a linearly anisotropic scattering law, and a second in which two higher terms of anisotropy are added to this law.