ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Theodore H. Smith, Burr H. Randolph
Nuclear Science and Engineering | Volume 4 | Number 6 | December 1958 | Pages 762-784
doi.org/10.13182/NSE58-A15497
Articles are hosted by Taylor and Francis Online.
Many factors influence the design of a containment structure: size and shape of the reactor and other equipment to be housed, topographic and subsurface features of the site, proximity to populated areas, relative economy of construction materials, need for access during operation, and most important, pressure-volume duty. For a given duty, and for geometrically similar structures, the volume can often be varied over a broad range with little change in total cost. The upper limiting volume is reached when external forces rather than internal govern the design; the lower limit is usually the point where the membrane becomes unreasonably thick. Two or more small vessels connected together may have advantages over one large vessel, but additional design problems arise in making them act as a unit. The merits of total versus partial containment are discussed. A comparison is made of the various designs studied in selecting the containment vessel for the Dresden Nuclear Power Station. These included simple and composite structures, some above and some below ground, some designed for total and some for partial containment. A steel sphere for partial containment was selected as best suiting the needs of this project.