ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Penn State and Westinghouse make eVinci microreactor plan official
Penn State and Westinghouse Electric Company are working together to site a new research reactor on Penn State’s University Park, Pa., campus: Westinghouse’s eVinci, a HALEU TRISO-fueled sodium heat-pipe reactor. Penn State has announced that it submitted a letter of intent to host and operate an eVinci reactor to the Nuclear Regulatory Commission on February 28 and plans to engage with the NRC on specific siting decisions. Penn State already boasts the Breazeale reactor, which began operating in 1955 as the first licensed research reactor at a university in the United States. At 70, the Breazeale reactor is still in operation.
Theodore H. Smith, Burr H. Randolph
Nuclear Science and Engineering | Volume 4 | Number 6 | December 1958 | Pages 762-784
doi.org/10.13182/NSE58-A15497
Articles are hosted by Taylor and Francis Online.
Many factors influence the design of a containment structure: size and shape of the reactor and other equipment to be housed, topographic and subsurface features of the site, proximity to populated areas, relative economy of construction materials, need for access during operation, and most important, pressure-volume duty. For a given duty, and for geometrically similar structures, the volume can often be varied over a broad range with little change in total cost. The upper limiting volume is reached when external forces rather than internal govern the design; the lower limit is usually the point where the membrane becomes unreasonably thick. Two or more small vessels connected together may have advantages over one large vessel, but additional design problems arise in making them act as a unit. The merits of total versus partial containment are discussed. A comparison is made of the various designs studied in selecting the containment vessel for the Dresden Nuclear Power Station. These included simple and composite structures, some above and some below ground, some designed for total and some for partial containment. A steel sphere for partial containment was selected as best suiting the needs of this project.