ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Nuclear News 40 Under 40—2025
Last year, we proudly launched the inaugural Nuclear News 40 Under 40 list to shine a spotlight on the exceptional young professionals driving the nuclear sector forward as the nuclear community faces a dramatic generational shift. We weren’t sure how a second list would go over, but once again, our members resoundingly answered the call, confirming what we already knew: The nuclear community is bursting with vision, talent, and extraordinary dedication.
Yoichi Watanabe, Jacob Appelbaum
Nuclear Science and Engineering | Volume 111 | Number 4 | August 1992 | Pages 379-390
Technical Paper | doi.org/10.13182/NSE92-A15485
Articles are hosted by Taylor and Francis Online.
Direct energy transfer by fission fragments near the wall of a cavity containing fissioning gas is studied in plane and cylindrical geometries. Analytical formulas are derived for the fission fragment energy flux. Heat transfer equations are solved for optically thick fissioning gases by taking into account the fission fragment energy transport effect. The results are applied to a heat transfer analysis of the fuel assemblies of a heterogeneous gas core reactor. The energy transfer mechanism in the fissioning gas is essentially nonlinear. Thus, the cooling effect due to direct fission fragment energy loss to the container walls does not become significant until the stopping range considerably exceeds the characteristic dimensions of the container. For example, when the ratio of the stopping range to the container dimension λ/δ is equal to 3, 45% of the energy flux at the container walls is due to the fission fragments; yet the maximum fuel temperature decreases by only l0%. If the ratio λ/δ is ∼100, fission fragments account for 95% of the energy flux to the walls, and the gas temperature decreases by 50%.