ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Yoichi Watanabe, Jacob Appelbaum
Nuclear Science and Engineering | Volume 111 | Number 4 | August 1992 | Pages 379-390
Technical Paper | doi.org/10.13182/NSE92-A15485
Articles are hosted by Taylor and Francis Online.
Direct energy transfer by fission fragments near the wall of a cavity containing fissioning gas is studied in plane and cylindrical geometries. Analytical formulas are derived for the fission fragment energy flux. Heat transfer equations are solved for optically thick fissioning gases by taking into account the fission fragment energy transport effect. The results are applied to a heat transfer analysis of the fuel assemblies of a heterogeneous gas core reactor. The energy transfer mechanism in the fissioning gas is essentially nonlinear. Thus, the cooling effect due to direct fission fragment energy loss to the container walls does not become significant until the stopping range considerably exceeds the characteristic dimensions of the container. For example, when the ratio of the stopping range to the container dimension λ/δ is equal to 3, 45% of the energy flux at the container walls is due to the fission fragments; yet the maximum fuel temperature decreases by only l0%. If the ratio λ/δ is ∼100, fission fragments account for 95% of the energy flux to the walls, and the gas temperature decreases by 50%.