ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Mark L. Williams, Harish Manohara
Nuclear Science and Engineering | Volume 111 | Number 4 | August 1992 | Pages 345-367
Technical Paper | doi.org/10.13182/NSE92-A15483
Articles are hosted by Taylor and Francis Online.
Contributons are the special particles distributed among a general population that generate the response observed on a specified detector. Contributon slowing-down theory describes the transfer of the response through space and energy as it is carried by contributons from the source to the detector. The response flow through space-energy and space-lethargy obeys the contributon slowing-down equation, which expresses conservation of contributons. A four-dimensional vector field is introduced to identify space and energy channels followed by the contributons, and is used to define response flow lines through space-lethargy. Numerical expressions are presented to compute the response current and slowing-down density that define the components of the response flow field. It is shown how these variables can be used to perform energy channel theory analysis of a particle transport problem. The method is applied to two realistic problems. The first determines contributon transport channels followed through space-energy by fission neutrons produced in a pressurized water reactor as they travel from the core to the reactor cavity region, where they activate surveillance dosimeters. The second examines the response transfer from a nuclear weapon burst as it is carried by contributons through space-lethargy channels in air to detectors located at some distance from ground-zero.