ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Mark L. Williams, Harish Manohara
Nuclear Science and Engineering | Volume 111 | Number 4 | August 1992 | Pages 345-367
Technical Paper | doi.org/10.13182/NSE92-A15483
Articles are hosted by Taylor and Francis Online.
Contributons are the special particles distributed among a general population that generate the response observed on a specified detector. Contributon slowing-down theory describes the transfer of the response through space and energy as it is carried by contributons from the source to the detector. The response flow through space-energy and space-lethargy obeys the contributon slowing-down equation, which expresses conservation of contributons. A four-dimensional vector field is introduced to identify space and energy channels followed by the contributons, and is used to define response flow lines through space-lethargy. Numerical expressions are presented to compute the response current and slowing-down density that define the components of the response flow field. It is shown how these variables can be used to perform energy channel theory analysis of a particle transport problem. The method is applied to two realistic problems. The first determines contributon transport channels followed through space-energy by fission neutrons produced in a pressurized water reactor as they travel from the core to the reactor cavity region, where they activate surveillance dosimeters. The second examines the response transfer from a nuclear weapon burst as it is carried by contributons through space-lethargy channels in air to detectors located at some distance from ground-zero.