ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
M. Drosg
Nuclear Science and Engineering | Volume 67 | Number 2 | August 1978 | Pages 190-220
Technical Paper | doi.org/10.13182/NSE67-190
Articles are hosted by Taylor and Francis Online.
An absolute scale for the differential cross sections of the reactions 3H(p, n)3He, 2H(d, n)3He, and 3H(d, n)4He, measured for incident energies between 6 and 17 MeV, was established using a calibrated time-of-flight system. Accurate charged-particle reference cross sections were inter-compared so that a common scale with an uncertainty of ±1.5% was obtained. By interchanging the target and beam nuclei, data were obtained at 180 deg in the original system for several cases. The new data were analyzed together with the previous data, and Legendre coefficients were extracted to permit presentation of the data between ∼5 and 20 MeV, thus extending and partly revising previous evaluations. The typical shape error of the angular distributions, as given by the Legendre coefficients, is <3% over the entire angular range. In addition, data on the neutron production at zero degree by breakup are given for the p-T and d-D reactions. By correcting the previous counter telescope data for the 1H(n, n)1H cross sections (according to more recent phase-shift analyses), scale ambiguities of ∼3% were resolved, thus indirectly verifying these phase shifts up to neutron energies of ∼16 MeV. However, at higher energies (above ∼23 MeV) for 3H(d, n)4He data, the corrected neutron counter telescope data deviate from the present analysis by ∼5%. Whether or not this difference is caused by the 1H(n, n)1H reference cross section used is open to further investigations.