ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
V. J. Orphan, C. G. Hoot, V. C. Rogers
Nuclear Science and Engineering | Volume 57 | Number 4 | August 1975 | Pages 309-327
Technical Paper | doi.org/10.13182/NSE75-A15423
Articles are hosted by Taylor and Francis Online.
Gamma-ray production cross sections were measured for (n, xγ) reactions in natural iron from 0.86- to 16.74-MeV neutron energy using the IRT Linac pulsed-neutron source. The 847- and 1238-keV gamma-ray production cross sections are presented with very high neutron resolution. Also, cross sections for 13 principal gamma rays are given using 20 neutron-energy groups. Cross sections were determined for an additional 16 discrete gamma rays using 10 neutron-energy groups. In general, the cross sections for the discrete gamma rays are in agreement with previous measurements. The gamma-ray spectra for the 10 neutron-energy groups were also unfolded to obtain gamma-ray production cross sections for the sum of both discrete and continuum gamma rays. In the present work the continuum component constituted over half the total gamma-ray production cross sections above 8 MeV.