ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. H. Rainey, J. G. Moore
Nuclear Science and Engineering | Volume 10 | Number 4 | August 1961 | Pages 367-371
doi.org/10.13182/NSE61-A15380
Articles are hosted by Taylor and Francis Online.
The Acid Thorex process has been developed on a laboratory scale for recovery of uranium and thorium from spent fuel solutions. The thorium and uranium are extracted by tributyl phosphate (TBP) with only the thorium nitrate and nitric acid as “salting agents.” As compared to the present Thorex process in which aluminum nitrate is employed as a salting agent, a considerably greater reduction in aqueous waste volumes is possible. With a synthetic solution of Consolidated Edison Thorium Reactor fuel as feed, uranium and thorium were decontaminated from ruthenium, zirconium-niobium, protactinium, and rare earth elements by factors of 2,000, 30,000, 1,000, and 105, respectively. The concentrated aqueous waste volume was 0.2 liter per kilogram of thorium processed. These values compare favorably with corresponding decontamination factor values for the aluminum-salted Thorex system of 600, 3,000, 3,000, and 2 × 105 and volume of 2 liters per kilogram of thorium processed.