ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
K. M. Case, Joel H. Ferziger, P. F. Zweifel
Nuclear Science and Engineering | Volume 10 | Number 4 | August 1961 | Pages 352-356
doi.org/10.13182/NSE61-A15377
Articles are hosted by Taylor and Francis Online.
It is first shown that the results of “asymptotic reactor theory” may be derived simply from the condition that an infinite medium rather than the correct finite medium diffusion equation be used to describe the thermal neutron flux in a reactor. In an asymptotic (bare, homogeneous, thermal) reactor, it is possible to describe the thermal flux through such an equation if the kernel of the infinite medium equation is defined properly, even when the reactor is not “large.” The relation between the kernels of the two equations is explicitly derived, and the conditions examined under which the kernel of the infinite medium equation can be interpreted physically as the Green's function of the infinite medium slowing-down problem. It is found that this interpretation is not restricted to the case in which the finite medium, slowing-down problem can be treated accurately by diffusion theory. Rather, the restriction is that the “asymptotic” portion of the flux give a reasonably accurate description of the finite medium Green's function. Thus, the use of transport kernels in asymptotic reactor theory is meaningful, a result which has been observed, but not explained, by a number of authors.