ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
S. R. Hatcher, H. K. Rae
Nuclear Science and Engineering | Volume 10 | Number 4 | August 1961 | Pages 316-330
doi.org/10.13182/NSE61-A15373
Articles are hosted by Taylor and Francis Online.
The formation of a colloidal suspension of hydrated aluminum oxide, Gibbsite or α-Al2O3 · 3D2O, in the heavy water of the NRU reactor is described, and compared with turbidity formation in other aluminum-water reactor systems. The observed corrosion rate of aluminum in NRU is consistent with a mass transfer mechanism involving the continuous dissolution of the corrosion product film. Two primary mechanisms for removing the dissolved aluminum from solution are postulated. These are direct crystallization onto deposits in the heat exchangers and direct crystallization onto Gibbsite particles in the water. The former effectively removes alumina from the system while the latter produces turbidity in the water. The rate of appearance of turbidity depends on its rate of formation and its rate of removal by the purification system. Turbidity is removed by filtration and adsorption in the ion-exchange columns and by evaporation. It is desirable to reduce the rate of formation of turbidity by choosing water conditions which minimize the solubility of the corrosion product film, rather than controlling the turbidity level by an adequate purification capacity.