ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
R. Wayne Houston
Nuclear Science and Engineering | Volume 4 | Number 2 | August 1958 | Pages 227-238
doi.org/10.13182/NSE58-A15364
Articles are hosted by Taylor and Francis Online.
For samples exposed in high neutron flux regions of reactors the contribution to the total dosage due to the recoils from elastically scattered fast neutrons may be significant. The calculation of this contribution is considered here. Three methods are presented, each differing in the manner in which the details of the energy distribution of fast neutrons are treated. In the first, the neutron flux per unit energy interval is assumed to be of the asymptotic or 1/E form up to fission energies. In the second and third, a separate computation is made for the uncollided neutrons reaching the sample. The remaining contribution due to once-scattered neutrons is treated as in the first method, but alternate forms for the source spectrum of once-scattered neutrons are considered. Use of the equations requires only a knowledge of the thermal neutron flux in the vicinity of the sample. Assumptions and limitations are discussed. Numerical results are presented for comparison of the effects in light water, heavy water, and graphite moderated reactors in the irradiation of a hydrocarbon (cyclohexane) sample.