ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Industry Update—November 2025
Here is a recap of recent industry happenings:
TerraPower’s Natrium plans for Wyoming, Utah move forward
TerraPower has reported a number of developments related to its Natrium sodium fast reactor project. In the project’s fifth round of procurement awards, the company awarded three supplier contracts to support the Natrium plant’s construction, which is underway in Kemmerer, Wyo., and is expected to be completed in 2030. AvanTech will design advanced sodium processing system modules and supporting skids for the Natrium plant, as well as fabricate and deliver the test and fill facility cold trap skid. Structural Integrity Associates will design and fabricate the sodium cover gas gamma spectroscopy analysis cabinet, a radiation monitoring system. PAR Systems will design and fabricate the pool handling machine, a specialized crane system for spent fuel pool operations.
J. H. Kittel, M. Novick, R. F. Buchanan
Nuclear Science and Engineering | Volume 4 | Number 2 | August 1958 | Pages 180-199
doi.org/10.13182/NSE58-A15361
Articles are hosted by Taylor and Francis Online.
As a result of the partial meltdown which occurred in EBR-I on November 29, 1955, it was necessary to remove the core assembly from the reactor and to separate the enriched fuel section from upper and lower unenriched blanket sections. A temporary cave was constructed on top of the reactor in order to remove the core assembly, and at this time about one-fourth of the fuel elements were removed. In order to perform further disassembly operations under less hazardous conditions, the core assembly was shipped from the Idaho Division of Argonne National Laboratory, at the National Reactor Testing Station, to the Lemont, Illinois, site of the Laboratory where disassembly was completed in a protective atmosphere. It was found that about 40 to 50% of the core had melted and reached temperatures ranging between approximately 850° and 1400°C, and that the molten portion had separated into three clearly defined zones characterized by different porosities. Densities of the zones ranged from 2.5 to 15.4 g/cm3, depending upon the degree of porosity. Chemical and mass spectrographic analyses indicated that relatively little mixing occurred in the core during the period in which it was molten, that the fuel alloy which penetrated the blanket sections originated primarily from the outer part of the molten zone, and that the blanket did not enter the molten phase. Observations during disassembly of the core and subsequent simulated meltdown experiments indicated that the porous structure which formed in the molten core could have resulted from the vaporization of entrained NaK.