ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
Toshikazu Takeda, Kazuo Azekura, Tadahiro Ohnishi
Nuclear Science and Engineering | Volume 62 | Number 4 | April 1977 | Pages 709-715
Technical Paper | doi.org/10.13182/NSE77-A15211
Articles are hosted by Taylor and Francis Online.
An improved response matrix method has been proposed to effectively take into account the anisotropy of neutron angular distributions. The method utilizes a relation between the P0 and P1 components of a neutron angular distribution instead of calculating them independently. Hence the number of unknowns as well as computing time can be kept about the same as in the conventional response matrix method which adopts an isotropic approximation of a neutron angular distribution. The proposed method has been evaluated by applying it to one-dimensional slab and two-dimensional hexagonal systems. The results are quite promising: In comparison with the reference SN calculation, the difference of the neutron multiplication factor and power distribution is within 0.1% Δk/k and 2%, respectively, and furthermore, the computing time is reduced to below one-third.