ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
P. I. Johansson, B. Holmqvist
Nuclear Science and Engineering | Volume 62 | Number 4 | April 1977 | Pages 695-708
Technical Paper | doi.org/10.13182/NSE77-A15210
Articles are hosted by Taylor and Francis Online.
The prompt fission neutron spectrum emitted by a sample of 235U irradiated with 0.53-MeV neutrons has been measured in the 0.6- to 15-MeV energy range by using time-of-flight (TOF) techniques. In the present work, a major effort was made to obtain an accurate experimental determination of the energy response and efficiency function of the neutron detector over the entire neutron energy range of interest. For this purpose, the TOF spectrometer was calibrated with respect to energy in the 0.5- to 21-MeV range by observing neutron groups from various nuclear reactions. The energy dependence of the neutron detector efficiency was determined by observing the angular distributions of the H(n,n)H process in the 1- to 15-MeV energy range. The overlapping 0.6- to 3-MeV energy range was covered by the T(p,n)3He reaction. The result of the fission neutron spectrum measurements has been used to find a suitable distribution function describing the data in the entire energy interval. The best description was obtained with the distribution N1(E) exp(–1.02E)sinh(2.32E)1/2.