ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
Edward T. Cheng, Robert W. Conn
Nuclear Science and Engineering | Volume 62 | Number 4 | April 1977 | Pages 601-616
Technical Paper | doi.org/10.13182/NSE77-A15204
Articles are hosted by Taylor and Francis Online.
The influence of design variations, such as the percentage of structural material in a tritium breeding zone or the enrichment of lithium in 6Li, on such important controlled thermonuclear reactor parameters as the tritium breeding ratio and the total nuclear energy produced has been studied using variational techniques for two different but general blanket designs. The first design uses liquid lithium as both coolant and breeding material, while the second uses a helium coolant and a solid-lithium-bearing compound as the tritium breeder. A variational technique based on variational interpolation is the primary computational tool, and it is shown that for linear perturbations in the transport operator and for a fixed source, only forward flux calculations are required to implement the variational interpolation approach. No adjoint functions are required, while any number of response functionals can be investigated. For both blanket designs, the influence of the choice of structural material, such as stainless-steel, molybdenum, niobium, vanadium, and aluminum structures, has been studied. The role of beryllium as a neutron multiplier with a solid breeder blanket is studied, and an optimum beryllium thickness is found that maximizes the breeding ratio. The influence of using graphite or the structural material as a neutron reflector and the effect of lithium burnup are also studied. It is found that for a given percentage of structural material in the tritium breeding zones, vanadium-structured systems achieve the highest breeding ratios, while molybdenum-structured systems produce the highest value of total nuclear heating. The effects of lithium burnup are small.