ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Edward T. Cheng, Robert W. Conn
Nuclear Science and Engineering | Volume 62 | Number 4 | April 1977 | Pages 601-616
Technical Paper | doi.org/10.13182/NSE77-A15204
Articles are hosted by Taylor and Francis Online.
The influence of design variations, such as the percentage of structural material in a tritium breeding zone or the enrichment of lithium in 6Li, on such important controlled thermonuclear reactor parameters as the tritium breeding ratio and the total nuclear energy produced has been studied using variational techniques for two different but general blanket designs. The first design uses liquid lithium as both coolant and breeding material, while the second uses a helium coolant and a solid-lithium-bearing compound as the tritium breeder. A variational technique based on variational interpolation is the primary computational tool, and it is shown that for linear perturbations in the transport operator and for a fixed source, only forward flux calculations are required to implement the variational interpolation approach. No adjoint functions are required, while any number of response functionals can be investigated. For both blanket designs, the influence of the choice of structural material, such as stainless-steel, molybdenum, niobium, vanadium, and aluminum structures, has been studied. The role of beryllium as a neutron multiplier with a solid breeder blanket is studied, and an optimum beryllium thickness is found that maximizes the breeding ratio. The influence of using graphite or the structural material as a neutron reflector and the effect of lithium burnup are also studied. It is found that for a given percentage of structural material in the tritium breeding zones, vanadium-structured systems achieve the highest breeding ratios, while molybdenum-structured systems produce the highest value of total nuclear heating. The effects of lithium burnup are small.