ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. Cloth, H. Conrads
Nuclear Science and Engineering | Volume 62 | Number 4 | April 1977 | Pages 591-600
Technical Paper | doi.org/10.13182/NSE77-A15203
Articles are hosted by Taylor and Francis Online.
Experimental work on the dense-plasma focus device Jülich I is presented. The main objective of this program was the development of a neutron source for controlled thermonuclear reactor applications on blanket and material problems. Therefore, detailed studies of the neutron production mechanism and of the fusion plasma properties of the plasma focus experiment were necessary. The investigations have been performed using reaction neutrons as special tools of plasma diagnostics. The results of neutron spectrum measurements indicate the presence of high-energy deuterons of at least 300 keV moving predominantly parallel to the axis of the gun. Neutrons produced by fusion reactions of deuterium and 7Li have been observed, again showing the presence of ions with energies above 300 keV up to at least 1 MeV. By shadow bar techniques, it has been found that the origin of the neutrons is restricted to a cone that extends from the anode to the lid of the discharge vessel. This suggests an acceleration of deuterons near the anode within the plasma volume. The deuterons are extruded from the pinch, moving freely through the neutral gas. The fusion reactions have been detected all along the flight path of the deuterons up to a distance of 126 cm from the anode. Time-resolved measurements of the neutron production show dependence of the emission time on the axial dimensions of the vessel.