ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
John D. Ramshaw, John A. Trapp
Nuclear Science and Engineering | Volume 66 | Number 1 | April 1978 | Pages 93-102
Technical Paper | doi.org/10.13182/NSE78-A15191
Articles are hosted by Taylor and Francis Online.
The occurrence and significance of complex characteristics in two-phase flow equation systems are clarified by a detailed analysis of separated two-phase flow between two parallel plates. The basic system of one-dimensional two-phase flow equations for this problem possesses complex characteristics, exhibits unbounded instabilities in the short-wavelength limit, and constitutes an improperly posed initial value problem. These difficulties have led some workers to propose major modifications to the basic equation system. We show that the relatively minor modification of introducing surface tension is sufficient to render the characteristics real, stabilize short-wavelength disturbances, and produce a properly posed problem. For a given value of the surface tension, the basic equation system thus modified is shown to correctly predict the evolution of small-amplitude disturbances having wavelengths long compared to the plate spacing. A formula is given for the artificial surface tension necessary to stabilize wavelengths on the order of the mesh spacing in a finite difference numerical calculation. A brief discussion is given concerning the expected behavior of surface tension as compared to viscosity in the nonlinear regime. The general relation between characteristics and stability is discussed in an appendix.