ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
W. Slagter
Nuclear Science and Engineering | Volume 66 | Number 1 | April 1978 | Pages 84-92
Technical Paper | doi.org/10.13182/NSE78-A15190
Articles are hosted by Taylor and Francis Online.
This paper deals with the application of the finite element method to solve the momentum equation for the central subchannel of a fuel rod bundle. The Galerkin procedure in the method of weighted residuals is used to form the nonlinear algebraic equations that are solved by means of the Newton-Raphson approach. For turbulent flow, the eddy diffusivities are determined by Prandtl's mixing length hypothesis. The mixing lengths perpendicular and parallel to the wall are calculated from geometrical conditions using relations obtained by various authors. The results obtained are critically compared with experimental data and also with those obtained by finite difference procedures. There is a close agreement between the finite element results and other calculated data. Corresponding results also show a good agreement with experimental data available.