ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
NRC approves subsequent license renewal for Oconee
All three units at the Duke Energy’s Oconee nuclear power plant in South Carolina are now licensed to operate for an additional 20 years.
W. Slagter
Nuclear Science and Engineering | Volume 66 | Number 1 | April 1978 | Pages 84-92
Technical Paper | doi.org/10.13182/NSE78-A15190
Articles are hosted by Taylor and Francis Online.
This paper deals with the application of the finite element method to solve the momentum equation for the central subchannel of a fuel rod bundle. The Galerkin procedure in the method of weighted residuals is used to form the nonlinear algebraic equations that are solved by means of the Newton-Raphson approach. For turbulent flow, the eddy diffusivities are determined by Prandtl's mixing length hypothesis. The mixing lengths perpendicular and parallel to the wall are calculated from geometrical conditions using relations obtained by various authors. The results obtained are critically compared with experimental data and also with those obtained by finite difference procedures. There is a close agreement between the finite element results and other calculated data. Corresponding results also show a good agreement with experimental data available.