ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
C. Nordborg, L. Nilsson, H. Condé, L. G. Strömberg
Nuclear Science and Engineering | Volume 66 | Number 1 | April 1978 | Pages 75-83
Technical Paper | doi.org/10.13182/NSE78-A15189
Articles are hosted by Taylor and Francis Online.
The gamma-ray production cross section of oxygen has been measured at incident neutron energies between 7 and 10.5 MeV. The production of the 6.13-, 6.92-, and 7.12-MeV gamma rays by the (n,n′γ) reaction in 16O and the 3.09-, 3.68-, and 3.85-MeV gamma rays by the (n,αγ) reaction has been studied. In addition, the production cross section of the 4.44-MeV gamma ray from inelastic neutron scattering on carbon has been measured at one neutron energy, since many earlier measurements of gamma-ray production cross sections have been performed relative to this cross section. Monoenergetic neutrons were produced by the 2H(d,n)3He and 3H(p,n)3He reactions. The gamma radiation was detected by a large Nal(Tl) scintillator using time-of-flight techniques. The neutron flux was measured by means of a proton-recoil telescope using the n-p scattering cross section. The differential gamma-ray production cross sections were measured at 90 deg. In addition, the angular distribution for the 6.13-MeV gamma ray was determined at one neutron energy. The results for oxygen, which show pronounced structure of the cross section for the 6.13-MeV gamma ray over the whole energy region, are in disagreement with current data files, whereas the results for carbon are in agreement with a number of recent investigations of the 12C(n,n′γ)12C and 12C(n,n′)12C reactions.