ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
WEST claims latest plasma confinement record
The French magnetic confinement fusion tokamak known as WEST maintained a plasma in February for more than 22 minutes—1,337 seconds, to be precise—and “smashed” the previous record plasma duration for a tokamak with a 25 percent improvement, according to the CEA, which operates the machine. The previous 1,006-second record was set by China’s EAST just a few weeks prior. Records are made to be broken, but this rapid progress illustrates a collective, global increase in plasma confinement expertise, aided by tungsten in key components.
T. J. Hoffman, L. M. Petrie, N. F. Landers
Nuclear Science and Engineering | Volume 66 | Number 1 | April 1978 | Pages 60-66
Technical Paper | doi.org/10.13182/NSE78-A15187
Articles are hosted by Taylor and Francis Online.
In this paper, a Monte Carlo method for the calculation of the change in the neutron multiplication factor of a reactor due to cross-section perturbations is developed. Although similar to the perturbation source method developed by Matthes, this method is not limited to problems in which first-order perturbation theory is applicable. This method has been implemented in the KENO computer code and applied to a variety of problems. The results of these calculations are presented in this paper. This approach should prove useful in the solution of problems in which other Monte Carlo methods, such as Matthes' first-order perturbation source method and correlated sampling, fail.