ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
P. B. Abramson, H. H. Hummel, E. M. Gelbard, P. A. Pizzica, J. J. Sienicki
Nuclear Science and Engineering | Volume 66 | Number 1 | April 1978 | Pages 14-23
Technical Paper | doi.org/10.13182/NSE78-A15184
Articles are hosted by Taylor and Francis Online.
In the use of large computers to analyze severe accidents in liquid-metal fast breeder reactors (LMFBRs), it has long been recognized that many of the fundamental phenomena cannot be precisely predicted because of uncertainty in the parameters that govern them. As a direct result, mechanistic analysis of such accidents has proceeded along a parametric path in which these variables are fixed at a certain constant value for the entire calculation: The influence of variation of this value is assessed by making a series of complete calculations with the parameter set at a different value for each such element of the series. While some parameters may be thought of as “correlated” or fixed for an entire calculation, very few are in fact constant throughout a reactor, and many are (for practical purposes) nearly completely uncorrected, either in space or time, during the hypothetical accident. Thus, such analysis has created a set of results that are not indicative or representative of an accident involving uncorrected or only partially correlated variable parameters. We describe here a methodology for dealing with various degrees of uncertainty or incoherence in these parameters. By using two very different mechanistic codes (FX2-POOL and EPIC), we demonstrate that the treatment of uncorrected parameters, such as droplet/particle size in a hypothetical core disruptive accident, as random variables with a certain probability distribution during each complete calculation of a series of calculations produces as much as an order of magnitude less uncertainty in the end result than had been obtained assuming perfect correlation. Finally, we categorize a small list of parameters as either correlated or uncorrected for some of the other LMFBR accident analysis codes. The technique we demonstrate can be easily implemented in a broad spectrum of accident analysis codes with similar benefits.