ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
N. V. Kornilov, S. M. Grimes, A. Voinov
Nuclear Science and Engineering | Volume 172 | Number 3 | November 2012 | Pages 278-286
Technical Paper | doi.org/10.13182/NSE11-61
Articles are hosted by Taylor and Francis Online.
The variations of ˜14-MeV (n, p), (n, ), and (n, 2n) reaction cross sections with A and Z have been analyzed. We tried to answer a rather interesting question: Can a simple parameterization be useful in comparing with nuclear reaction model calculations? In addition, we checked several approaches for parameterization. Simple systematics gave a better prediction than model calculation for the (n, 2n) reaction at A > 120. At a low mass number, the difference between experimental data and calculated or fitted results may be connected with the structure of levels for residual nuclei. We saw better agreement between experimental and fitted data in comparison with results of model calculation in particular for the (n, ) reaction for A < 110. Both approaches failed to predict (n, p) cross sections inside experimental uncertainties for A < 110 and the (n, ) cross section for A > 110. This failure may be connected with low accuracy of experimental data or with some unknown physical effect that provides an additional splitting of experimental data.