ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Akio Yamamoto
Nuclear Science and Engineering | Volume 172 | Number 3 | November 2012 | Pages 259-267
Technical Paper | doi.org/10.13182/NSE11-88
Articles are hosted by Taylor and Francis Online.
An approach incorporating the discontinuity factor in transport calculations based on the integrodifferential transport equation, e.g., the discrete ordinates method, the method of characteristics, and the Monte Carlo method, is proposed. In the present approach, the effect of the discontinuity factor is incorporated by correcting cross sections (absorption, production, and scattering cross sections are divided by the discontinuity factor), and the anisotropic scattering cross sections of odd order are corrected with the discontinuity factor and the total cross section. The validity of the present method is confirmed through simple benchmark calculations using the method of characteristics. The present method would be a candidate for a mitigation method for errors associated with approximations, e.g., energy condensation, spatial homogenization, or coarse discretization, in transport calculations.