ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
R. T. Evans, D. G. Cacuci
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 216-222
Technical Note | doi.org/10.13182/NSE11-110
Articles are hosted by Taylor and Francis Online.
We have implemented the first-order adjoint sensitivity analysis procedure (ASAP) into the three-dimensional parallel radiation transport code system Denovo, a module of the SCALE software suite. In particular, we used a Krylov-based approach to compute the solution to the inhomogeneous adjoint systems occurring in the ASAP. Our implementation, as a component of Denovo's scalable framework, should allow the efficient computation of cross section and atomic number density sensitivity coefficients for critical systems in a massively parallel fashion. We have constructed a proof that the Krylov-based approach converges to a unique solution and compared its computational requirements with the standard algorithm used in the neutron transport community. In addition, we performed a verification of our ASAP implementation on the Godiva experimental benchmark. We found the new approach to be an order of magnitude faster than the standard algorithm in this benchmark.