ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tom Burr, Jeremy Conlin, Jianwei Hu, Jack Galloway, Vladimir Henzl, Howard Menlove, Martyn Swinhoe, Stephen Tobin, Holly Trellue, Timothy Ulrich
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 180-192
Technical Paper | doi.org/10.13182/NSE11-73
Articles are hosted by Taylor and Francis Online.
Estimating plutonium (Pu) mass in spent nuclear fuel assemblies (SFAs) helps inspectors ensure that no Pu is diverted. Therefore, nondestructive assay (NDA) methods are being developed to assay Pu mass in SFAs. Uncertainty quantification is an important task in most assay methods, and particularly for SFA assay. A computer model (MCNPX) is being used to predict isotope masses and the spatial distribution of masses in virtual SFAs for 64 combinations of initial fuel enrichment (IE), fuel utilization [burnup (BU)], and cooling time (CT) values. Additional MCNPX modeling for the same 64 virtual SFAs provided the expected detector responses (DRs) for several NDA techniques such as the passive neutron albedo reactivity method and the 252Cf interrogation with prompt neutrons method.A previous paper describes one uncertainty quantification approach involving Monte Carlo (MC) simulation using individually any of six new NDA options together with IE, BU, and CT. This paper provides an interpretation of the MC approach that is suited for a numerical Bayesian alternative, separately assesses the impact of MCNPX interpolation error, and compares several options to use subsets of IE, BU, CT, and one DR.