ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Will Palisades be the “comeback kid”?
Mike Mlynarek believes in this expression: “In the end it will be OK; and if it’s not OK, it’s not the end.”
As the site vice president at Palisades nuclear power plant in Covert Township, Mich., Mlynarek is overseeing one of the most exciting projects in the United States nuclear power industry. If all goes according to plan, Holtec’s Palisades plant will be splitting atoms once again by the end of 2025 and become the first U.S. nuclear facility to restart after being slated for decommissioning.
V. Kumar, Nagendra Singh Raghaw, H. S. Palsania
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 151-163
Technical Paper | doi.org/10.13182/NSE11-41
Articles are hosted by Taylor and Francis Online.
A Monte Carlo code is developed in Visual Basic 6.0 for the study of radiation damage of pure metals irradiated by a neutron spectrum. At energies <10 MeV, development of cascades of elastic interactions of both primary neutrons and secondary recoiled atoms is incorporated. In a collision, kinetic energy given to an atom below or above the threshold displacement energy Ed (eV) is calculated along with the displacements. Displacements, defect production efficiency η, and damage energy Tdam are estimated to relate to the physical changes in the irradiated metal and to estimate the displacements per atom. The code is validated by determining the defect density on the surface of irradiated thin nickel foil and comparing with the hill-hock density of displaced atoms, using atomic force microscopy. In the case of irradiation of a niobium sample, stress-strain and I-V characteristics are measured before and after the irradiation by neutrons from an Am-Be source, and both stress and electrical resistance are shown to be enhanced after the irradiation.