ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Bo Shi, Bojan Petrovic
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 138-150
Technical Paper | doi.org/10.13182/NSE11-19
Articles are hosted by Taylor and Francis Online.
The Monte Carlo method is widely used to compute the fundamental eigenfunction and eigenvalue for nuclear systems. However, the standard power iteration method computes only the fundamental eigenmode, while it would be beneficial to also compute the higher eigenfunctions and eigenvalues to support the reactor transient analysis, stability analysis, and assessments of nuclear safety, as well as to enable certain source convergence acceleration techniques. Modifications to the power method have been developed that in principle can accomplish this goal, but they typically lead to unphysical positive and negative particles requiring a procedure to compute the net-weight deposition. In this paper, we present a new mechanism that enables the Monte Carlo procedure, with certain modifications, to compute the second eigenfunction and eigenvalue for one-dimensional (1-D) problems. The method could in principle be extended to higher harmonics and general geometries. The results from numerical examples, including a 1-D, two-group, multiregion example, are consistent with reference results. Moreover, the extra computational cost of this method is of the same order of magnitude as the conventional Monte Carlo simulations. This method can be applied solely to solve for the high eigenmodes, or implemented as a part of a net-weight computation mechanism when negative particles are present in the modified power iteration method.