ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Bo Shi, Bojan Petrovic
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 138-150
Technical Paper | doi.org/10.13182/NSE11-19
Articles are hosted by Taylor and Francis Online.
The Monte Carlo method is widely used to compute the fundamental eigenfunction and eigenvalue for nuclear systems. However, the standard power iteration method computes only the fundamental eigenmode, while it would be beneficial to also compute the higher eigenfunctions and eigenvalues to support the reactor transient analysis, stability analysis, and assessments of nuclear safety, as well as to enable certain source convergence acceleration techniques. Modifications to the power method have been developed that in principle can accomplish this goal, but they typically lead to unphysical positive and negative particles requiring a procedure to compute the net-weight deposition. In this paper, we present a new mechanism that enables the Monte Carlo procedure, with certain modifications, to compute the second eigenfunction and eigenvalue for one-dimensional (1-D) problems. The method could in principle be extended to higher harmonics and general geometries. The results from numerical examples, including a 1-D, two-group, multiregion example, are consistent with reference results. Moreover, the extra computational cost of this method is of the same order of magnitude as the conventional Monte Carlo simulations. This method can be applied solely to solve for the high eigenmodes, or implemented as a part of a net-weight computation mechanism when negative particles are present in the modified power iteration method.