ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ding She, Kan Wang, Ganglin Yu
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 127-137
Technical Paper | doi.org/10.13182/NSE11-44
Articles are hosted by Taylor and Francis Online.
In loosely coupled systems and large-scale systems, Monte Carlo criticality calculation suffers from slow fission source convergence because of the high dominance ratio (DR). In previous work, the Wielandt method and the superhistory method have been separately proposed to accelerate source convergence. However, although both methods decrease the DR, they are found not able to sufficiently accelerate fission source convergence. In this paper, the effective DR is defined and used to analyze the effectiveness of the Wielandt method and the superhistory method and to theoretically prove that they cannot reduce the computational time to converge the fission source. Accordingly, both methods are modified by adjusting the source population of inactive cycles, and their efficiency after adjustment is also compared. Moreover, the asymptotic Wielandt method (AWM) and the asymptotic superhistory method (ASM) are proposed, and the rules of deciding asymptotic parameters are also discussed. The new methods are implemented into the RMC code and validated by calculating loosely coupled problems and large-scale problems. Numerical calculation results show that AWM and ASM are practical and efficient for source convergence acceleration, which can save 75% to 90% of the computational time to reach a converged fission source.