ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Ding She, Kan Wang, Ganglin Yu
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 127-137
Technical Paper | doi.org/10.13182/NSE11-44
Articles are hosted by Taylor and Francis Online.
In loosely coupled systems and large-scale systems, Monte Carlo criticality calculation suffers from slow fission source convergence because of the high dominance ratio (DR). In previous work, the Wielandt method and the superhistory method have been separately proposed to accelerate source convergence. However, although both methods decrease the DR, they are found not able to sufficiently accelerate fission source convergence. In this paper, the effective DR is defined and used to analyze the effectiveness of the Wielandt method and the superhistory method and to theoretically prove that they cannot reduce the computational time to converge the fission source. Accordingly, both methods are modified by adjusting the source population of inactive cycles, and their efficiency after adjustment is also compared. Moreover, the asymptotic Wielandt method (AWM) and the asymptotic superhistory method (ASM) are proposed, and the rules of deciding asymptotic parameters are also discussed. The new methods are implemented into the RMC code and validated by calculating loosely coupled problems and large-scale problems. Numerical calculation results show that AWM and ASM are practical and efficient for source convergence acceleration, which can save 75% to 90% of the computational time to reach a converged fission source.