ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Three nations, three ways to recycle plastic waste with nuclear technology
Plastic waste pollutes oceans, streams, and bloodstreams. Nations in Asia and the Pacific are working with the International Atomic Energy Agency through the Nuclear Technology for Controlling Plastic Pollution (NUTEC Plastics) initiative to tackle the problem. Launched in 2020, NUTEC Plastics is focused on using nuclear technology to both track the flow of microplastics and improve upstream plastic recycling before discarded plastic can enter the ecosystem. Irradiation could target hard-to-recycle plastics and the development of bio-based plastics, offering sustainable alternatives to conventional plastic products and building a “circular economy” for plastics, according to the IAEA.
S. Plattard, J. Blons, D. Paya
Nuclear Science and Engineering | Volume 61 | Number 4 | December 1976 | Pages 477-495
Technical Paper | doi.org/10.13182/NSE76-A14485
Articles are hosted by Taylor and Francis Online.
The neutron-induced fission cross section of 237Np was measured between 3 eV and 2 MeV by the time-of-flight technique using a gas scintillator as a fission fragment detector. Two measurements were carried out with the Saclay 60-MeV Linac used as a pulsed-neutron source. The first measurement, with a nominal resolution of 2 ns/m, was performed in the 3-eV to 35-keV energy range, where the fission cross section exhibits the well-known intermediate structure. The samples were cooled to liquid nitrogen temperature to reduce the Doppler broadening predominant below 50 eV. Thanks to good statistics and to a very low background, a shape resonance analysis was possible up to 155 eV, the quoted uncertainties on the fission widths being essentially due to inaccurate neutron widths. The second experiment was run from 25 keV to 2 MeV, with a nominal resolution of 0.3 ns/m, and showed a structureless fission cross section. The agreement with the Physics 8 underground nuclear explosion data seems to be very poor in the resonance region, whereas it is more satisfactory for higher energies. Neptunium-238 fission barrier parameters were deduced from the collected data and agree fairly well with published results.