ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Yinlu Han, Yongli Xu, Haiying Liang, Hairui Guo, Chonghai Cai, Qingbiao Shen
Nuclear Science and Engineering | Volume 172 | Number 1 | September 2012 | Pages 102-121
Technical Paper | doi.org/10.13182/NSE11-28
Articles are hosted by Taylor and Francis Online.
All cross sections of neutron-induced reactions, angular distributions, energy spectra, and double-differential cross sections are consistently calculated and analyzed for n + 27Al reactions at incident neutron energies below 200 MeV based on the nuclear theoretical models. The optical model; the unified Hauser-Feshbach theory and exciton model, which includes the improved Iwamoto-Harada model; and the distorted wave Born approximation theory are used. Theoretical calculated results are compared with the experimental data and the evaluated results in ENDF/B-VII and JENDL-3. The optical model potential parameters are obtained according to the experimental data of total and nonelastic scattering cross sections and elastic scattering angular distributions.