ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Yinlu Han, Yongli Xu, Haiying Liang, Hairui Guo, Chonghai Cai, Qingbiao Shen
Nuclear Science and Engineering | Volume 172 | Number 1 | September 2012 | Pages 102-121
Technical Paper | doi.org/10.13182/NSE11-28
Articles are hosted by Taylor and Francis Online.
All cross sections of neutron-induced reactions, angular distributions, energy spectra, and double-differential cross sections are consistently calculated and analyzed for n + 27Al reactions at incident neutron energies below 200 MeV based on the nuclear theoretical models. The optical model; the unified Hauser-Feshbach theory and exciton model, which includes the improved Iwamoto-Harada model; and the distorted wave Born approximation theory are used. Theoretical calculated results are compared with the experimental data and the evaluated results in ENDF/B-VII and JENDL-3. The optical model potential parameters are obtained according to the experimental data of total and nonelastic scattering cross sections and elastic scattering angular distributions.