ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
M. Drosg, R. Avalos Ortiz, P. W. Lisowski
Nuclear Science and Engineering | Volume 172 | Number 1 | September 2012 | Pages 87-101
Technical Paper | doi.org/10.13182/NSE11-66
Articles are hosted by Taylor and Francis Online.
Much of the absolute differential cross-section data for elastic scattering by 3He depends on an experiment at the Los Alamos National Laboratory (LANL), published in 1974. Since that time, computer techniques have been developed that can make more accurate corrections for, e.g., sample-size effects. Since complete documentation of the LANL experiment is available, modern analysis techniques were applied to improve these data, based on simulations using the Los Alamos Monte Carlo neutron transport code MCNPX. Of a total of 29 published differential cross-section distributions, 15 published in 1982 from another laboratory depend on the LANL data but were not corrected for sample-size effects and therefore provide only relative yield functions. The present study simulates these latter data using MCNPX to obtain self-attenuation correction factors for the scattered neutrons. An energy-dependent analysis shows that at neutron energies between 5 and 14 MeV, these latter corrected data are in good agreement with the other data, whereas above 22 MeV they are not. A complete energy-dependent analysis of all absolute differential cross sections between 5 and 23.7 MeV is presented.