ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE signs two more OTAs in Reactor Pilot Program
This week, the Department of Energy has finalized two new other transaction agreements (OTAs) with participating companies in its Reactor Pilot Program, which aims to get one or two fast-tracked reactors on line by July 4 of this year. Those companies are Terrestrial Energy and Oklo.
H. Park, D. A. Knoll, C. K. Newman
Nuclear Science and Engineering | Volume 172 | Number 1 | September 2012 | Pages 52-65
Technical Paper | doi.org/10.13182/NSE11-81
Articles are hosted by Taylor and Francis Online.
We present a nonlinear acceleration algorithm for a transport criticality problem. The algorithm combines the well-known nonlinear diffusion acceleration (NDA) algorithm with a recently developed, Newton-based nonlinear criticality acceleration (NCA) algorithm. The algorithm first employs NDA to reduce the system to scalar flux, then NCA is applied to the resulting drift-diffusion system. We apply a nonlinear elimination technique to eliminate the eigenvalue constraint equation from the Jacobian matrix. Numerical results show that the algorithm can reduce the CPU time by a factor of 30 to 400 compared to traditional power iterations (PIs) combined with standard source iterations and by a factor of 3 to 5 compared to application of NDA combined with inner PIs.