ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Will Palisades be the “comeback kid”?
Mike Mlynarek believes in this expression: “In the end it will be OK; and if it’s not OK, it’s not the end.”
As the site vice president at Palisades nuclear power plant in Covert Township, Mich., Mlynarek is overseeing one of the most exciting projects in the United States nuclear power industry. If all goes according to plan, Holtec’s Palisades plant will be splitting atoms once again by the end of 2025 and become the first U.S. nuclear facility to restart after being slated for decommissioning.
Rodolfo M. Ferrer, Yousry Y. Azmy
Nuclear Science and Engineering | Volume 172 | Number 1 | September 2012 | Pages 33-51
Technical Paper | doi.org/10.13182/NSE10-106
Articles are hosted by Taylor and Francis Online.
A reformulation of the arbitrarily high-order transport method of the characteristic type (AHOT-C) for unstructured grids (AHOT-C-UG) is presented in this work, which resolves the previous difficulties encountered in the original formalism. A general equivalence between the arbitrary-order neutron balance and arbitrary-order characteristic equations is derived, which improves the numerical computation of the spatial moments of the angular flux and allows a series expansion of the characteristic integral kernel in cases where the medium is optically thin. Numerical results are presented, which verify the convergence behavior of AHOT-C-UG for various expansion orders.