ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Rodolfo M. Ferrer, Yousry Y. Azmy
Nuclear Science and Engineering | Volume 172 | Number 1 | September 2012 | Pages 33-51
Technical Paper | doi.org/10.13182/NSE10-106
Articles are hosted by Taylor and Francis Online.
A reformulation of the arbitrarily high-order transport method of the characteristic type (AHOT-C) for unstructured grids (AHOT-C-UG) is presented in this work, which resolves the previous difficulties encountered in the original formalism. A general equivalence between the arbitrary-order neutron balance and arbitrary-order characteristic equations is derived, which improves the numerical computation of the spatial moments of the angular flux and allows a series expansion of the characteristic integral kernel in cases where the medium is optically thin. Numerical results are presented, which verify the convergence behavior of AHOT-C-UG for various expansion orders.