ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Westinghouse’s lunar microreactor concept gets a contract for continued R&D
Westinghouse Electric Company announced last week that NASA and the Department of Energy have awarded the company a contract to continue developing a lunar microreactor concept for the Fission Surface Power (FSP) project.
Gilberto Espinosa-Paredes, Marco Antonio Polo-Labarrios
Nuclear Science and Engineering | Volume 171 | Number 3 | July 2012 | Pages 258-264
Technical Note | doi.org/10.13182/NSE11-58
Articles are hosted by Taylor and Francis Online.
In this technical note we develop a new approximation from the solution of the time-dependent Boltzmann equation, which includes a fractional constitutive equation of the neutron current density, for a general medium. The fractional constitutive equation in combination with the conservation law that governs the particle collision and reaction processes (P1) approximation for the transport equation gives a time-fractional telegrapher's equation (TFTE). The wave velocity found with this approximation is 3-/2 for < 1. The numerical results are compared with the exact solution and Heizler's approximation. We found that the TFTE gives the best estimate for a purely absorbing medium, where most approximations fail. The asymptotic diffusion coefficient was applied for a heterogeneous medium, and the results show that the behavior of the TFTE improves.