ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
N. J. Peters, J. C. McKibben, K. Kutikkad, W. H. Miller
Nuclear Science and Engineering | Volume 171 | Number 3 | July 2012 | Pages 210-219
Technical Paper | doi.org/10.13182/NSE10-71
Articles are hosted by Taylor and Francis Online.
A detailed study at the Missouri University Research Reactor indicates that limitations in the energy balance methodology, using the Monte Carlo N-Particle transport code (MCNP) and the Evaluated Nuclear Data Files (ENDF), affect the accuracy of predicting important parameters for reactor physics studies. In the case of fuel conversion, key parameters such as flux and power level cannot be measured until the converted reactor is operating. Therefore, predictions with well-known uncertainties are essential for an effective conversion. However, due to inherent energy balance problems in the isotopic heating evaluations for materials within various fuel matrices, in particular the U-10Mo monolithic fuel, the values for the predicted parameters could vary more than previously estimated. In particular, the total recoverable energy per fission, which directly affects the calculated flux for a given power level, appears to be underestimated by MCNP's energy balance method. Therefore, an alternative methodology for predicting the total recoverable energy of a system was investigated. Results for the proposed low-enriched uranium U-10Mo configuration show that there is a 3.02-MeV difference between the total recoverable energy per fission from this work and that from the MCNP predictions. A similar comparison for the present highly enriched uranium UAlx configuration shows a difference of 1.24 MeV.