ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
ANS standard updated for determining meteorological information at nuclear facilities
Following approval in October from the American National Standards Institute, ANSI/ANS-3.11-2024, Determining Meteorological Information at Nuclear Facilities, was published in late November. This standard provides criteria for gathering, assembling, processing, storing, and disseminating meteorological information at commercial nuclear power plants, U.S. Department of Energy/National Nuclear Security Administration nuclear facilities, and other national or international nuclear facilities.
Adrienne M. LaFleur, William S. Charlton, Howard O. Menlove, Martyn T. Swinhoe
Nuclear Science and Engineering | Volume 171 | Number 3 | July 2012 | Pages 175-191
Technical Paper | doi.org/10.13182/NSE11-40
Articles are hosted by Taylor and Francis Online.
A new nondestructive assay technique called self-interrogation neutron resonance densitometry (SINRD) is currently being developed at Los Alamos National Laboratory to improve existing nuclear safeguards and material accountability measurements for light water reactor fuel assemblies. The viability of using SINRD to quantify the fissile content (235U and 239Pu) in pressurized water reactor 17 × 17 spent low-enriched uranium and mixed-oxide fuel assemblies in water was investigated via Monte Carlo N-particle extended transport code simulations. SINRD utilizes 244Cm spontaneous fission neutrons to self-interrogate the fuel pins. The amount of resonance absorption of these neutrons in the fuel can be quantified using 235U and 239Pu fission chambers placed adjacent to the assembly. The sensitivity of this technique is based on using the same fissile materials in the fission chambers as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n,f) reaction peaks in the fission chamber. SINRD requires calibration with a reference assembly of similar geometry. However, this densitometry method uses ratios of different fission chambers so that most systematic errors related to calibration and positioning cancel in the ratios.