ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Will Palisades be the “comeback kid”?
Mike Mlynarek believes in this expression: “In the end it will be OK; and if it’s not OK, it’s not the end.”
As the site vice president at Palisades nuclear power plant in Covert Township, Mich., Mlynarek is overseeing one of the most exciting projects in the United States nuclear power industry. If all goes according to plan, Holtec’s Palisades plant will be splitting atoms once again by the end of 2025 and become the first U.S. nuclear facility to restart after being slated for decommissioning.
I. J. Thompson, Y. M. X. M. Dardenne, J. M. Kenneally, A. Robertson, L. E. Ahle, C. A. Hagmann, R. A. Henderson, D. Vogt, C.-Y. Wu, W. Younes
Nuclear Science and Engineering | Volume 171 | Number 2 | June 2012 | Pages 85-135
Technical Paper | doi.org/10.13182/NSE10-101
Articles are hosted by Taylor and Francis Online.
Because of the importance of accurate data for fission chain yields (FCYs) for many applications, we present a rigorous “clean sheet” evaluation of all available data to provide an accurate set of pertinent FCYs. Because some nuclear data (e.g., half-lives, branching ratios, etc.) have been refined since the original analyses, where possible we update the data and their associated uncertainties. This evaluation is particularly topical since there are differences in the nuclear data used by radiochemists at different laboratories internationally and since some experiments from the 1970s have been recently reexamined with details published for the first time.The focus of this work is the production of a small set of fission products (95Zr, 99Mo, 144Ce, 147Nd) from plutonium irradiated by fission spectrum neutrons. Because 147Nd is a common isotope used at several laboratories, its production rate is examined critically. We find that most of the interlaboratory discrepancies can be explained by a dependence of its yield on the energy of the neutron causing fission, so we consider in detail the statistical significance of this claim. The potential for neutron energy dependence of 147Nd production from plutonium was first recognized in 1977 by Maeck and recently raised again as a possibility by Chadwick. The data for 95Zr, by contrast, demonstrate no statistically significant energy-dependence trends, but the data at the higher energies demonstrate significant scatter.With the relatively small number of data points, and recognizing that measurement methods and technologies have likely significantly improved in the nearly 30 years since the last measurement, additional measurements to refine the assessment and improve the uncertainties may be warranted.